
Renormalisation-group theory of the phase transition in ultrametric spin glasses

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys.: Condens. Matter 2 2721

(http://iopscience.iop.org/0953-8984/2/11/015)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 10/05/2010 at 21:55

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/2/11
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 2 (1990) 2721-2734. Printed in the UK 

Renormalisation-group theory of the phase transition in 
ultrametric spin glasses 

Vik S Dotsenko 
Landau Institute for Theoretical Physics, Academy of Sciences of the USSR, Moscow 

Received 15 May 1989 

Abstract. Spin-glass systems possessing the hierarchical tree-like structure of thermo- 
dynamically relevant metastable states are considered. A renormalisation-group scheme for 
the calculation of the partition function is proposed, and a systematic method for the 
calculation of the renormalised Hamiltonian with increasing scale in the space of states 
is derived. The renormalisation-group equations for the parameters of the renormalised 
Hamiltonian (which contain all powers of the spin variables) are obtained. For the model 
with infinite-range Gaussian interactions, the well known results for the phase transition are 
recovered. 

1. Introduction 

At present, after many years of hard work by many people, the concept of spin glasses 
( S G )  has acquired an almost philosophical status. Although concrete experimental 
systems still await the answers to concrete questions, theoretical activity now embraces 
a wide spectrum of problems from biological (via solid state) to social. All those theories 
could be united rather conditionally under one common label ‘Theory of spin glasses’, 
and very often in some cases it is important to agree first on what is meant by the general 
label. 

What I shall discuss in this paper I would prefer to specify under the term ‘true spin 
glasses’. It is easier to explain first what is not implied by this term. If one has a system 
that at decreasing temperature undergoes a finite-order symmetry-breaking transition, 
it would not necessarily be an ordered system (like a ferromagnet). A trivial example 
is a Mattis-like magnet, where the disorder is just an irrelevant variable. However, 
conceptually, even much more tricky disordered systems could be referred to in the 
same ‘class’. Intuitively these are systems that on lowering the temperature undergo the 
symmetry-breaking transition only once (or a finite number of times). Such systems 
below T, could have many, or even infinitely many, metastable states separated by 
infinite barriers, and the disorder in such states could be quite relevant. However, what 
is important is that in the overall low-temperature range the number of separated 
metastable states (‘valleys’ in phase space) does not change, or, if talking even more 
intuitively, the change in their number is not crucial. 

What essentially occurs in this case is that beiow T, the system is becoming ‘trapped’ 
in one of many valleys in phase space, and then the situation ‘inside’ the valley proves 
to be qualitatively the same as for a ferromagnet. In other words, what is essential is that 
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there are some definite states in those valleys of phase space. That is why the low- 
temperature state of such a system could be considered just as some (presumably rather 
tricky) transformation of the ferromagnetic state. Although such a scenario could in fact 
take place in realistic disordered statistical systems, this is not what I would refer to as 
'true spin glasses'. 

A quite different nature of the low-temperature state manifests itself in the Sher- 
rington and Kirkpatrick (1975) (SK) model with infinite-range interactions studied in 
detail by Mezard et a1 (1984). The crucial feature of the low-temperature state of the SK 
model is the ultrametric (tree-like) structure of metastable states separated by infinite 
barriers (Mezard et a1 1984). Of course, there could be many reasons to consider that 
phenomenon as just a consequence of the extremely artificial nature of the model itself. 
However, one could also regard it as a refined example of the general phenomenon, 
which manifests itself in the fractal-like structure of the free-energy landscape and which 
I would call the main feature of 'true spin glasses'. 

On the intuitive level, this phenomenon could be described as follows. In the case of 
a ferromagnet, below T, there exist two ground states separated by an infinite barrier. 
On increasing the temperature, the barrier 'melts' at T,, and the two states 'merge' 
together to form a paramagnetic state. In the case of a 'true spin glass' well below T,, 
one would have numerous metastable states separated (in the thermodynamic limit) by 
infinite barriers, but those barriers would have a whole spectrum of corresponding 
'melting' temperatures (due to different entropy 'thicknesses'). Then, after some small 
increase in the temperature, the weakest barriers would melt and some families of states 
would merge together to form a new 'pattern' of new metastable states. Correspondingly, 
due to any lowering of the temperature, each valley of the phase space would 'split' into 
families of valleys, again separated by infinite barriers. Such a phenomenon proceeds 
continuously down to zero temperature. Therefore, there would be no definite 'ground' 
states corresponding to the valleys of the phase space at finite T. 

Of course, the above scenario (although aesthetically attractive) is just an illustrative 
hypothesis without almost any hope of being proved rigorously from first principles of 
microscopic theory. Nevertheless, the purpose of the present paper is to show that under 
some assumptions a certain kind of microscopic theory could be formulated. 

The principal problem of any thermodynamic theory is to define those relevant 
degrees of freedom that give the leading contribution to the partition function. Then no 
summation should be performed over all the states of the phase space. 

The basic assumption of the present approach concerns the relevant states. It is 
assumed that all the relevant states of the spin glass could be classified in terms of the 
hierarchical tree. In other words, the space of relevant states is supposed to have 
ultrametric topology (Rammal et a1 1986). 

Consider, more specifically, the king spin system {ai} {a = k l ;  i = 1 , .  . . , N ) .  The 
value of the overlap between any two states {ai}(") and {a,}(p) could be defined as 

Overlap, in a sense, is a quantity that is the opposite of 'distance' in the space of 
states: close (strongly correlated) states have overlap close to 1, while 'distant' (non- 
correlated) states have overlap close to 0. Then, one can say that the subset { ~ ~ } ( ~ ) ( a  
= 1,.  . . , p  < 2 N )  out of all the states possesses the ultrametric topology if, for 
any three states {oi}("l), {a,}("z), {ai}("3), two out of their three overlaps q " l " 2 ,  q " l " 3 ,  
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q a 2 " 3  are necessarily equal and the third one is not smaller than their value, e.g. 
q " l " 2  = q a 1 " 3  s q n 2 " 3 .  The space of states with such a topology is illustrated by the 
hierarchical tree (figure 1) in which the states are the endpoints of the tree and the 
overlap between any two states is determined by the number of generations from the 
closest common ancestor. Although looking rather peculiar, this kind of arrangement 
actually appears to be quite natural in the infinite-dimensional space of states (section 
2) 

Figure 1. 

Note that the above assumption does not mean that one deals with infinite-range 
interaction models only (although, up to now, ultrametricity has been convincingly 
proved only for the SK model). After fixing the ultrametric statistical properties of the 
relevant states, the calculations will be performed for an arbitrary quenched interaction 
matrix J,, and the effective Hamiltonian resulting from the renormalisation-group 
calculation will depend on J ,  as parameters. 

For the calculation of the partition function over states that are classified in terms of 
the hierarchical tree, the renormalisation-group (RG) scheme is the most natural way of 
proceeding. As is conventional in any RG scheme, the calculations should be performed 
step by step, taking into account the whole range of the degrees of freedom from 'fast' 
to 'slow', which corresponds to the transition from the microscale to the macroscale. 
Unlike the traditional RG scheme in which the degrees of freedom are classified according 
to their spatial scale in ultrametric spin glasses, the degrees of freedom should be 
classified in terms of the scale in phasespace. The natural measure of such a scale is given 
by the overlap between the states (equation (1.1)). The value of the overlaps changes 
from 1 to 0: if the two states are strongly correlated, i.e. they are close in phase space, 
their overlap is close to 1; if the two states are non-correlated, i.e. they are distant, their 
overlap is close to 0. 

A tree-like structure implies that the states form a hierarchy of non-overlapping 
families. To describe it, let us introduce a regular discretisation of the interval 0 G q s 1 
by the set {qr}, I = 1 , 2 , .  . . , L $- 1, where qo = 0, qL = 1 and qr+l - ql = 6q 

The first-level families are formed by those states that have mutual overlaps no 
1. 
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smaller than qL- Such families correspond to the scale qL- = 1 - 6q and they are just 
one point ‘above’ the exact states that correspond to the scale qL = 1. The families could 
be described by the configurations of the average site magnetisations {S,(qL- 1)), where 
S,(q,- = (o,)(+ and the averaging at a given site goes over the states (a) belonging to 
one family. The ‘states’ described by the configurations ‘live’ at the scale qL-  of the tree 
(figure I) and they could be called the ancestor states for the exact states. 

The ancestor state families at the level (scale) qL-2  of the tree are formed by those 
states that have mutual overlaps no smaller than qL-2. They can be represented by the 
configuration of the site magnetisations Sl (qLp2)  = (S,(qL- l ) ) ( a ) ,  where the averaging 
goes over the ancestor states of the previous level qL- belonging to one family (ancestor 
state) at the next level qL-2.  

Correspondingly, at some intermediate scale q1 the given ancestor state {S,(ql)} is 
formed by averaging over its ‘descendant’ states of the previous scale qr+l.  

The basis of the RG calculations is the specially ordered way of summing up the 
relevant states. Let the spin system be described by some microscopic Hamiltonian 
H[o,] .  At the first RG step let us fix the configurations of all the families. Then the exact 
spin states could be represented as of = S,(q,- + 6S,, where 6S ,  are small fluctuations 
of the site magnetisations on the background of the ancestor state { S l ( q L - l ) ) .  By defi- 
nition of the ancestor states, one has (6s) = 0 at each site, and it can also be shown that 
(6Sf) - 6q 1. Therefore the first step of the RG procedure is to sum up the elemen- 
tary excitations {6S,} to get a new renormalised Hamiltonian HL-,[S,(qL- = 

Correspondingly, at some intermediate scale q one has to represent the states {S,(q)}  
H[S,(q,-1)1 + SH[S,(qL-l)I. 

as small fluctuations on the background of the ancestor state {S,(q - 6q)):  

S , ( q )  = S , ( q  - 6q)  + SS , (q )*  (1.2) 
Then the one-step RG transition from the Hamiltonian at scale q to that at scale q - 6q 
consists of summing up the fluctuations {6S,): 

Obviously the crucial point for this procedure is the statistical properties of the 
fluctuations as,, which are determined by the structure of the hierarchical tree itself. 
For this reason in section 2 the evolution-like generation of the tree of states is considered 
in general terms. It is stated that at least for a certain class of trees the fluctuations exhibit 
simple statistics in the ‘continuous limit’ q + 0: 

( 6 S J S , )  = 6,(S?/q)%. (1.4) 
A direct consequence of the statistics described by (1.4) is that the effective Ham- 

iltonian produced by the RG procedure (1.3) will contain all kinds of multiple interactions 
of the spins in all powers. Nevertheless, the general structure of the renormalised 
Hamiltonian can be derived and the RG equations for the parameters of the Hamiltonian 
can be obtained (section 3). 

Moreover, it will be shown in section 4 that, at least for the infinite-range interaction 
model, the leading terms of the Hamiltonian can be summed up in a rather simple way. 
In the limit q + 0 the Hamiltonian will be shown to be reduced to the form 
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where the renormalised 'interaction matrix' J p )  depends on the temperature, the scale 
q and all the powers of ST/q. The variables here are bounded by the condition 
W I Z j  S: = q (i.e. (S:/q) - 1). This means that the effective interactions between the 
effective variables Vi = S i / d q  are equal to qJLR). Having an explicit expression for the 
matrix I F ) ,  we can show that at temperatures T > 1 the matrix has no divergence in the 
limit q + 0. Therefore, the effective variables become decoupled, which corresponds 
to the paramagnetic phase. 

On the other hand, at T s 1, matrix J(iR) does have an anomaly at a finite scale qc = 
-t, where t = (T  - 1). It can be shown that the interactions of the eigenvectors cor- 
responding to the edge of the eigenvalue spectrum of the initial matrix J ,  become 
divergent at q+ 4,. This is interpreted as the setting-up of infinite energy barriers 
separating the states at scale 4,. The proposed RG procedure cannot and should not go 
beyond scale q ,  since below T,  the actual observable thermodynamics occurs inside the 
separated valleys of the phase space. Such valleys correspond to the frozen ancestor 
states {Si(q,)} of the tree. 

In section 5 the prospects of treating the finite-range interaction model are briefly 
discussed. 

2. The evolution tree of states 

According to the general philosophy discussed in the introduction, the continuous 
process of fragmentation of the valleys of the phase space is expected to take place at 
decreasing temperatures below T,. Continuing the process down to zero temperature, 
one could eventually come to exact spin states. Therefore, these spin states could be 
considered as the endpoints of the evolution branching process in phase space. It is the 
infinite-dimensionality of the phase space that makes it impossible for the departed 
branches to come close to each other again and therefore naturally produces ultra- 
metricity . 

A rather general way to 'grow up' the evolution tree of the Ising spin states is the 
following (see, e.g. Mezard et aZl987). Take the interval [-1, +1] and for each site of 
the system independently let us start the evolution branching process: 

(i) With probability P,(y) taken, numbers ynl E [-1, +13, al = 1,. . . , n,. 
(ii) Foreachy"1 taken2numbersy"la2(cuz = 1, . . . , n2)withconditionalprobability 

(iii) For each y"l"2 take n3 numbers yala2a3 (a3 = 1, . . ., n3) with conditional 
probability P2(ynla2"3 Iy"l"2) (for simplicity we consider the Markov processes that are 
known to take place in the SK model). 

(iv) After L steps one will get the hierarchical tree of numbers C y n 1 , , . @ ~ }  E [-1, 
+I]. The tree is described by the set of probability functions 

zJ,(yala~ ly"1). 

pl-l(y"l . " I  ly"l..."i-l ) (2.1) 

(1 = 0,1 ,  . . , , L )  and is characterised by the branching numbers (n,, n2, . . . , n,), which 
could in general be different for different levels of the tree. 

(v) Finally, for the site under consideration, define the magnetisation of the Ising 
spin as cr = sgn(y*l..."L). 
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The above branching process has to be performed at each site of the system inde- 
pendently. As a result one gets the hierarchical tree of spin states 

{o j}(" l , . .&~)  = sgn(y"l..."L). (2.2) 

The statistical properties of the tree are defined by the conditional probability functions 
(equation (2.1)). 

Simple probabilistic considerations show that this tree is obviously ultrametric. For 
the overlap between two states that have a common ancestor state at level 1 one gets 

+1 

- dY1 ' * dY/P/-l(Y/IY/-lL ' * Pl(Y2IYl)PO(Y1) 

2 

- i, 
x (J-, dY/+ l .  dY ,~L(Y~lY,- l ) . . .P , (y , , l /y / ) sgn(Y,) )  =41. 

+ I  

(2.3) 
The above equation for the overlapscan also be expressed in terms of the ancestor states: 

This expression can also be rewritten in a recurrent form: 
+1 

S(o(y) = I dy'  S('+')(y')P,(y'ly). 
-1 

Keeping in mind future RG calculations, the essential point in all these constructions 
is the statistics of the spin fluctuations: 

& + q . . . " / + l )  5 S"l..."i"/tl - S"l..."/, 

= (($"l.,."/+l) - $al..."/) 2 ((&pl.. . " /+d  1 2 ) ( " /+ l )  - 1 h + l )  

(2.7) 

The average square of such spin fluctuations can be expressed as 

= I_" d y ' [ S (I+ ( y ' )] * P I  ( y ' I y * 1 ,  , , 1) 

1 

At this point one has to refer to some concrete 'natural' properties of the hierarchical 
tree. It is natural to assume that at each step of the branching process the newly generated 
states are close to the state of the previous step. This means that the functions P,(y' Iy), 
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withy taken as a parameter, have a form close to the &function concentrated near the 
value of y. Therefore there exists a small parameter of one step: 

2 

8x1 = j dE E 2 N Y  + Ely) - (j+l dL5 EPdY + Ely)) = ( E 2 )  - ( E > 2 .  (2.9) 
-1 

In terms of this parameter for the spin fluctuations (equation (2.8)) one gets 

(SS2)(y) = (-)2Sx/. 
ay 

(2.10) 

On the other hand, according to equations (2.3) and (2.4) for the considered one- 
step transition one has 

(2.11) 

where 
+ I  

9Ay) = 1 dy1 . . dy1-1 P / - I (Y IY/ - I )P I -~ (Y/ - I  1~1-2 ) .  - . PO(YI  (2.12) 
-1 

In the following it will be assumed that everything is symmetric (or antisymmetric) 
with respect to y-, - y ,  and in the intervals [-0, 1) and (0, + l ]  all the functions are 
homogeneous with respect to y. Therefore ax1 do not depend on y and for the spin 
fluctuations one obtains 

(2.13) 

The quantity (aslay) has a simple meaning: it determines the number of sites in the 

(2.14) 

system AN(S)  having value of magnetisation from S to S + SS: 

AN( S) = N9 I (y (0 (S)) Ay(0 (S) = N9 I (y(‘) (S)) (a $0 /ay) AS. 

In other words, the density of such a spin ‘cluster’ is 

Q [ (S) = 9 / (y (0 (S)) (a S(‘) /ay) - 1  . (2.15) 

Now let us consider the behaviour of the functions under consideration in the 
‘continuous limit’ for ql+ 0, s -+ 0 (which is expected to correspond to the region near 
T J .  One could consider at least two different regimes of asymptotic behaviour of the 
function Q(S) for S-, 0. 

The first case is when the function Q(S) remains finite in the limit S 4  0. For the spin 
fluctuations one consequently obtains from (2.13) 

(as*) = Sq.  (2.16) 

This case was considered in the previous paper (Dotsenko 1987). It can be shown that 
it describes the ‘trivial’ situation corresponding to the ‘spherical’ model with continuous 
spins 1 SI < qN,  and consequently more or less does not correspond to anything since the 
spherical model does not exhibit any hint of ultrametricity . 

A quite different situation arises when the density of the spin ‘cluster’ Q(S) is 
expected to be divergent at  S + 0. Since there are no reasons to expect non-analyticity , 
the simplest kind of divergence in the main order in S is 

[Q/(s--90)1-1 =A(qdISI (2.17) 
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where A(q)  is some function of the level of the tree. In this case for the spin fluctuations 
(equation (2.13)) one will have 

( S S 2 )  = (S2/q)Sq. (2.18) 

Since the branching process considered goes on at each site of the system independently, 
one finally gets 

(6Sf6S,) = 6,(S?/q)64. (2.19) 

Actually this is the basic ansatz for the RG calculations considered in the next section. 
The meaning of all the considerations of the present section was to show that the ansatz 
(2.18) could be a natural property of at least a certain class of tree. Although there is a 
great variety of different hierarchical trees, it is those (and maybe only those) that 
exhibit the statistics (2.18) that can be shown to have both solvable and non-trivial 
thermodynamics with the SG phase transitions. 

3. The renormalised Hamiltonian and diagrams 

We start the RG procedure with the Ising Hamiltonian 

~0 = z, aiJoaj 

where J ,  is some quenched interaction matrix. In the result of the renormalisation at 
some intermediate scale ql, one could expect to get an effective Hamiltonian H,/[S(')].  

To understand the structure of the Hamiltonian, let us consider how the first few 
terms are generated by the one-step RG procedure (equation (1.3)). Consider what 
comes out of the first bilinear term that is generated by the initial Hamiltonian (3.1): 

To perform the averaging over the states {al} one has to write 
s q , . . . n ,  = Sql..,"/-l + Ssql..."i (3.3) 

and the averaging over the spin fluctuations in equation (3.2) should be performed 
according to equation (2.19) (note also that, by definition of 6 S ,  (6s) = 0). 

In addition to the initial bilinear part 

$p ,'jpi...@i-i J . .SFI . . , " / -~  
I 

i#j 

the renormalised Hamiltonian acquires an additional term 

(3.4) 

According to equation (2.19) the part that depends on the variables S in the first order 
in 6q is 
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It is convenient to represent different interactions of the Hamiltonian in terms of 
diagrams. The initial bilinear term can be represented as 

where the open circles are the spins S and the line is the coupling PJv. The term (3.5) 
produced by the one-step renormalisation can be represented as 

where the full circle is S2. 
The algorithm for higher-order interaction generation is obvious: one has to ‘glue 

up’ the circles in all possible ways. For example, the terms of equations (3.6) and (3.7) 
in the next step of the renormalisation will generate higher-order terms that can be 
represented as: 

(3.10) 

b 

Here the full circles also represent higher-order powers of the spins. The rule is simple: 
the power of the spin (the order of the vertex) coincides with the number of incoming 
lines. 

Therefore the overall Hamiltonian is composed of all kinds of such diagrams of all 
orders. The parameters changing with the RG change of the scale q are the weights of 
the vertices. The nth-order vertex can be represented as 

(l ln>sn Gn (4). (3.11) 
The RG equations for the vertex weights G, can be easily obtained. In the result of the 
one-step renormalisation, the nth-order vertex gets one contribution from the ‘gluing 
up’ of all pairs of vertices of the kth and (n  - k)th order ( k  = 1 , 2 , .  . . , n - 1) and 
another from ‘self-action’. The resulting RG equations are 

(3.12) 

where G1 = 1. 
Strictly speaking the problem of solving equations (3.12) is not self-consistent since 

the region where the initial conditions Gn,2(q = 1) = 0 are defined is beyond the region 
q e 1 where the equations are valid. However, it can be proved that equations (3.12) 
have a ‘universal’ asymptotic behaviour for q -+ 0, which does not depend on the initial 
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conditions. After some algebra, one can easily check that in the main order in q the 
solutions are 

G2k E [ ( - 2 ) k / q k l  - k2q)  (3.13) 

G2k+l(4) = [ ( - 2 > k / q k l  (2k + 1). (3.14) 

Note that according to equations (3.13) and (3.14), the even vertices S2kG2k(q) - 1, 
while the odd vertices 

(3.15) S2k+lG * k + l ( q )  - s - dq e 1. 

4. The phase transition 

Now we face the problem of summing up all the diagrams constituting the Hamiltonian 
with vertices given by equations (3.13) and (3.14). Of course, this is a hard problem to 
solve for a general matrix, but at least for the model with infinite-range interactions it 
can be solved in a rather simple way. 

one can ignore all diagrams containing loops. Examples of diagrams containing loops 
are 

The main simplification is due to the fact that, in the main order in N-' (A'-+ x 1, 

Here the lines Zji are described by the Gaussian distribution with = J i / N .  One can 
easily estimate that any loop produces an additional factor N-' .  Therefore, in order to 
obtain the expression for the renormalised Hamiltonian, one has to sum up only tree- 
like diagrams. 

The second step is to classify all the diagrams according to the number of linear- 
power spins contained in them. The crucial point is that in the limit q -+ 0 (near T,) all 
the diagrams that contain an additional pair of linear spins acquire a small additional 
factor proportional to q. For that reason, in the main order in q ,  all the diagrams that 
contain more than two linear spins, such as 

P 

can be ignored. For the same reason, one should not take into account diagrams that 
contain odd-order vertices (equations (3.14) and (3.15)). 

Therefore, in the main order in q and N- l ,  one has to sum up all the tree-like diagrams 
containing only even vertices and with only two end linear spins. The sum of such 
diagrams could be considered as the generalised bilinear interaction S , J Y ) (  p, q ,  S 2  )Si 



The phase transition in ultrametric spin glasses 2731 

and can be represented in terms of the equation 

n (4.3) m=-+-+ 

+ ’ .  ‘ +  a 
Here the thick full line represents JFj and the hatched line represents the sum of all the 
tree-like diagrams in which all the interactions are squared: 

(4.4) 

One can easily check that all other diagrams with higher powers of the interactions, such 
as 

are of higher qrciers in N-’. 
- 

In explicit form, equations (4.3) and (4.4) can be written as 

where 

Using equation (3.13), one can obtain the solution of equation (4.5) 

j w  = j (  1 + p j ’ )  -1 

J;i = J i j K j ( P ,  q ,  S * )  

(4.7) 

(4.8) 

where 

and 

From equation (4.6) the equations for the Zcan be obtained as 

(4.10) 

Therefore in the limit q + 0 we have the asymptotic theory that is described by the 
free energy 

S q 4  = ipq c 

vi = SJVq 

ij 

where the effective variables 

ViJp j  Vi (4.11) 

(4.12) 
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are bounded by the condition 

1 
N i  
-E v; = 1. (4.13) 

The asymptotic expression (equation (4.11)) means that the effective interactions 
between the variables V, are 

PqJliR’. (4.14) 

In the limit q + 0 one has two possibilities. The first, a ‘trivial’ one, is when there are 
no anomalies (divergences) in the interaction matrix j(R). In this case the variables V ,  
become decoupled (the effective temperature goes to infinity for q+ 0) and conse- 
quently the corresponding state of the system is paramagnetic. 

However, another possibility exists. It will be shown that at T < J o  the matrix J^(R) 
has an anomaly. Namely, the interactions of the eigenvectors corresponding to the edge 
of the eigenvalue spectrum of the initial matrix .f become divergent. This means that in 
such case the limit q+ 0 cannot be reached. Consider equation (4.10). Assuming self- 
averaging for the quantity (I> = (l/N)X, I, one gets 

(4.15) 

(4.16) 

(I> = $[(l + 8,82Ji )1 /2  - 11 

PJO = 1 - t 

4 - 3t 
where 

t = ( T  - J o ) / J o  4 1. 

Correspondingly 

P ( K )  E (1/2Jo) (1 - at). (4.17) 

Since the spectrum of the eigenvalues of the initial interaction matrix JLj is in the interval 
(-2Jo, +2J0) ,  the spectrum of the effective interaction matrix (4.7) begins at 

- 2Jo/(l - 2JObw). (4.18) 

The result (4.17) shows that this value becomes divergent at t + +O (when T+ T, = J o  
from above). This can be interpreted as the setting up of infinite barriers at T,, which 
would divide the phase space into valleys below T,. 

The above speculations indicate that for T < T, the limit q + 0 cannot be reached 
and the RG procedure should stop at some q(r)  # 0. To show that, we have to perform 
the above calculations for J F )  in the next order in q.  To do that we have to take into 
account the additional class of diagrams that contain an even number of additional 
‘branches’ .f(R) such as 

(4.19) 
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This gives a non-zero contribution when the end linear spins of the ‘branches’ .f(R) 
coincide in pairs. For the diagram (4.19) it gives the additional multiplier 

(4.20) 

where the values of J F )  should be taken at q -+ 0. Assuming self-averaging, expression 
(4.20) is reduced to  

tq((Jl;’)2). (4.21) 

Using the expression for .f(R) (equation (4.7)) at the phase transition point, after some 
algebra one can easily check that 

((JfQ)’) = 4. (4.22) 

Therefore, instead of equation (4.10), after summing up all the diagrams (4.19) for the 
parameters I one finally obtains the equation 

(4.23) 

Note that in obtaining equation (4.23) one should use the expressions for the vertices 
GZk(q) in the next order in q ,  too (equation (3.13)). However, one can easily check that 
the first correction k2q in G2k(q) appears to be ‘marginal’, giving no contribution to 
equation (4.23). 

According to equation (4.18) the divergence of the spectrum of the matrix .f(R) first 
appears when 

P(K)  = M2Jo (4.24) 

or according to equation (4.24), when 

(0 = # J o .  (4.25) 

This is the condition for the boundary for the RG procedure value of q,  
The equation for (I) can be obtained from equation (4.23): 

( I )  = P’Ji(1 + 2(Ij)-1(1 + iq)-1. (4.26) 

Solving it with (I) given by equation (4.25), one finally obtains that the boundary value 
of q at which the divergence in the interactions occurs is 

q(t) = --z (4.27) 

where t = T/J,  - 1 ( 1  t 1 < 1). 
The value of q ( z )  can be interpreted as the scale in the phase space at which the 

infinite barriers grow. In other words, at T < T, = J o  the system should be expected to 
be trapped in one of the valleys of the phase space, which corresponds to one of the 
ancestor states of the ultrametric tree characterised by the value of the average square 
magnetisations 

(4.28) 
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5. Conclusions 

In the present paper a new RG method has been proposed, which in principle could 
provide a thermodynamic description for any spin glass (or any disordered system) with 
an ultrametric arrangement of thermodynamically relevant states. Explicit calculations 
have been performed for a model with Gaussian infinite-range interactions, and the well 
known results for the phase transition have been recovered. 

The present RG method is proposed, of course, not just as an additional way to solve 
the SK model (it is the right time to give up solving the SK model). There is hope that the 
method could have much wider applications. The reasons for this are as follows. The 
method itself is based ‘only’ on the assumption of the ultrametricstructure of the relevant 
states of the disordered system (which could be hoped to be a quite natural property), 
while the microstructure of the ultrametricity could be described by some rather general 
evolution functions P4(y  iy’) (equation (2.1)). 

The RG equation for the parameters of the effective Hamiltonian and even the 
general structure of the effective Hamiltonian itself can be obtained in terms of the 
arbitrary spin-spin interaction matrix Ji,. In the case of infinite-range Jli, the derivation 
of the renormalised Hamiltonian near T, was shown to be a not very difficult problem. 
The reason for that is obvious: the corresponding diagrams have no loops. On the other 
hand, for the derivation of the renormalised Hamiltonian of the finite-range interaction 
model, certain types of loops must be taken into account. 

The principal question that remains to be solved is to what extent the problem of 
taking into account the loops is only a technical problem. As for the main question, if 
the basic ultrametric hypothesis is correct, it could be answered only aposteriori. 

Acknowledgments 

The author is grateful to L B Ioffe, M V Feigelman, M A Virasoro and G Parisi for 
useful discussions. 

References 

Dotsenko V S 1987 J .  Phys. C: Solid State Phys. 20 5473 
Mezard M, Parisi G, Soulas N,  Toulouse G and Virasoro M 1984 Phys. Rev. Letr. 52 1156 
Mezard M, Parisi G and Virasoro M 1987 Spin-Glass Theory and Beyond (Singapore: World Scientific) 
Rammal R, Toulouse G and Virasoro M A  1986 Rev. Mod. Phys. 58 765 
Sherrington D and Kirkpatrick S 1975 Phys. Rev. Lett. 35 1792 
Virasoro M A and Mezard M 1985 J .  Physique 46 1293 


